Adaptive Neuro-Fuzzy Inference Controllers for Smart Material Actuators

نویسندگان

  • Teodor Lucian Grigorie
  • Ruxandra Mihaela Botez
چکیده

An intelligent approach for smart material actuator modeling of the actuation lines in a morphing wing system is presented, based on adaptive neuro-fuzzy inference systems. Four independent neuro-fuzzy controllers are created from the experimental data using a hybrid method -a combination of back-propagation and Least-Mean-Square (LMS) methods -to train the fuzzy inference systems. The controllers’ objective is to correlate each set of forces and electrical currents applied on the smart material actuator to the actuator’s elongation. The actuator experimental testing is performed for five force cases, using a variable electrical current. An integrated controller is created from four neuro-fuzzy controllers, developed with Matlab/Simulink software for electrical current increases, constant electrical current, electrical current decreases, and for null electrical current in the cooling phase of the actuator, and is then validated by comparison with the experimentally obtained data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System

Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....

متن کامل

Controlling structures by inverse adaptive neuro fuzzy inference system and MR dampers

To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...

متن کامل

Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which t...

متن کامل

Fuzzy Control of Vibration of a Smart Cfrp Laminated Beam

In the present study, fuzzy control of vibration of a hybrid smart composite beam actuated by electro-rheological fluids (ERF) and piezoceramics actuators is investigated. A carbon fiber reinforced plastics (CFRP) cantilevered beam containing ERF with bonded piezoceramics is prepared and vibrated forcibly with sinusoidal external excitation. Fuzzy model of controlled element containing two actu...

متن کامل

Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System

In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009